
Varietal and technical innovations for the sustainable and integrated management of root-knot nematodes

Djian-Caporalino C., Navarrete M., Palloix A., Mateille T., Lefevre A., Barbary A., Fazari A., Marteu N., Chapuis M., Tchamitchian M., Dufils A., Sage-Palloix A-.M., Tavoillot J., Pares L., Védie H., Goillon C., Taussig C., Risso S., Lanza R., Castagnone-Sereno P.

Root-knot nematodes (*Meloidogyne* spp.): a major problem in organic and conventional horticulture especially in warm areas and under shelters

An average 10% of yield loss is frequently cited (*Raaijmakers et al., 2009*) but much higher percentages observed under local conditions (*Wesemael et al., 2011*)

South-East France : 40% of farms experience crop losses due to RKN (*Djian-Caporalino, 2010*)

Few RKN *R*-genes available for vegetables and fewer commercial cultivars available

(Starr et al. 2002 ; Villeneuve & Djian-Caporalino 2013)

- Mi-1 gene on tomato (T°<30°C)</p>
- Me(s) and N genes on pepper

R-genes can be overcome

(Jarquin-Barberena et al. 1991; Castagnone-Sereno et al. 1994, 1996, 2001; Meher et al. 2009; Djian-Caporalino et al. 2011; Tzortzakakis et al. 2005, 2008 ; Verdejo-Lucas et al. 2009 ; Devran and Söğüt 2010 ; Thies 2012)

- In controlled conditions with high pressure of RKN (Mi-1 and Me3)
- In natural conditions (*Mi-1* in tomato and *N* in pepper cultivars)
- Several alternative techniques used to control RKN, but only partially efficient (Collange et al. 2011)
 - Thermal techniques (soil solarization, steam)
 - Nematicide cover cropping
 - **Crop sequence combining host and non host species**

The main questions of our projects

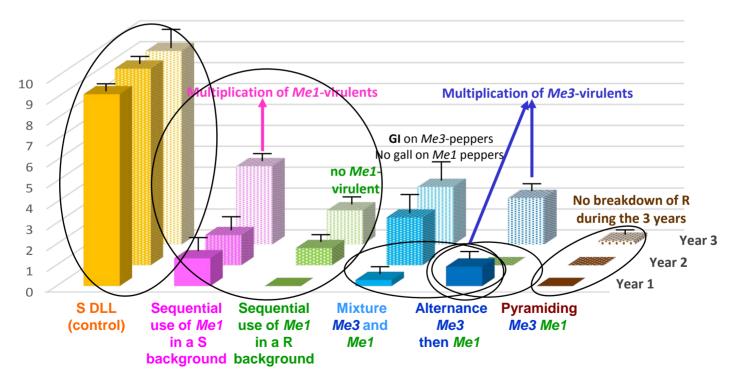
- 1 What crop production system(s) combining *R*-plants management strategie(s) and other cropping techniques (solarisation, intercropping, rotation with non host plants, etc.) to extend resistance durability and sustainability of the protection?
- What agronomic impact (productivity, soil fertility)?
- 3 What impact on soil ecology (other nematodes and other plant pathogens)?
- 4 Are the proposed options acceptable for producers (yield, work organisation, etc.)?

First experimental approach: a 3-year experiment in an experimental farm (SE France)

Development of *R*-plants management strategies lowering the risk of emergence of virulent nematodes :

Protected vegetable crops under mediterranean climate, soil naturally highly infested by *M. incognita* + *M. arenaria*

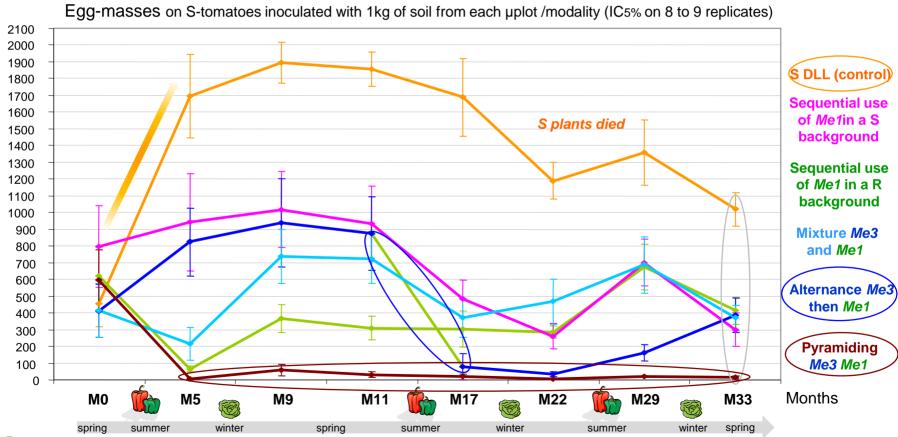
- Sequential use of a single *R*-gene introgressed in a susceptible or in a resistant genetic background
- Alternance of *R*-genes in rotation
- **Mixture** of different *R*-genotypes in the same plot
- Pyramiding 2 R-genes in one genotype



Djian-Caporalino *et al., BMC Plant Biology* 2014 Barbary *et al., Theor Appl Biol* 2014

Results of the first experiment

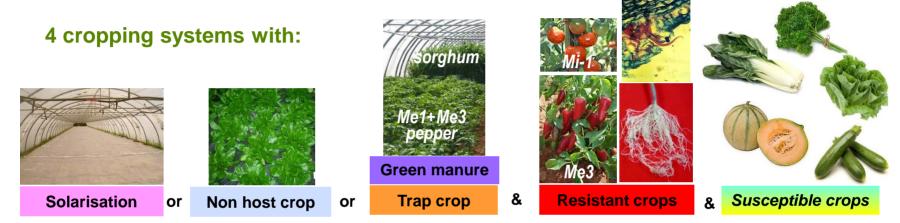
R-efficiency and R-durability : Pyramiding > Alternating > Mixture of R-genes
 Sequential use of a single R-gene introgressed in a R background >> Sequential use of a single R-gene introgressed in a S background


Mean GI (gall index) on 40 to 45 peppers after 5 months of culture in summer ($IC_{5\%}$)

Results of the first experiment

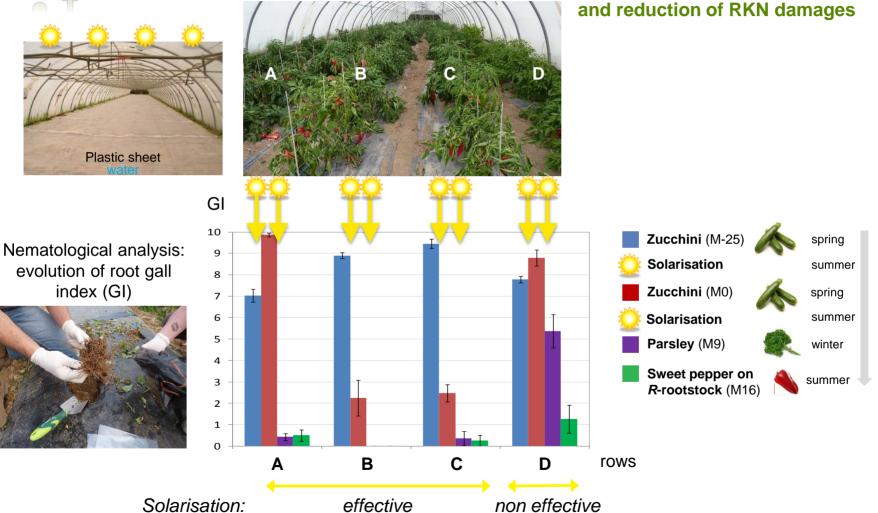
Sustainability of rotating cultivation by "Trap effect": Alternating R-genes in rotation is efficient to decrease virulent populations in the field (specificity of virulence) and Pyramiding R-genes in one pepper genotype is the best modality as trap crop

On going experimental approach: a 4-year and multi-site device in experimental stations and commercial farms


Combination of R-plants and cropping techniques for the sustainable and integrated management of RKN, extending resistance durability, with positive impact on soil ecology and good agronomic potential, acceptable for producers

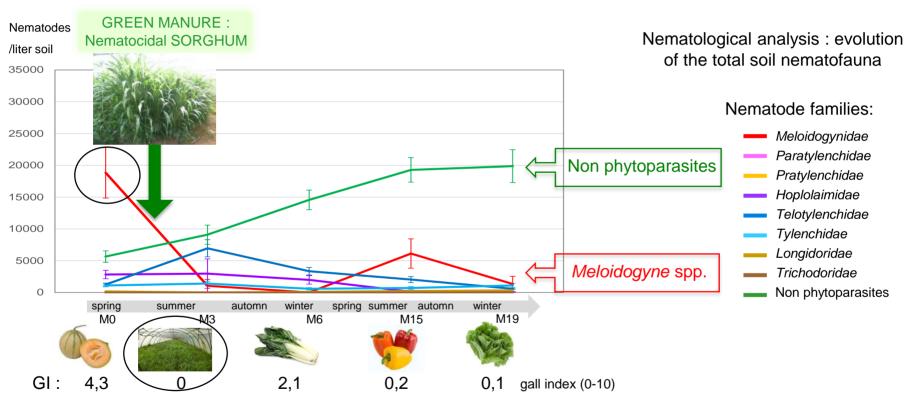
On going experimental approach: a 4-year and multi-site device in experimental stations and commercial farms

A 4-year nematological, ecological, genetical, and agronomical assessment


A survey of farmers' acceptability of cropping systems in 30 farms producing vegetables and with RKN problems

S3 system: Nîmes

A few preliminary results

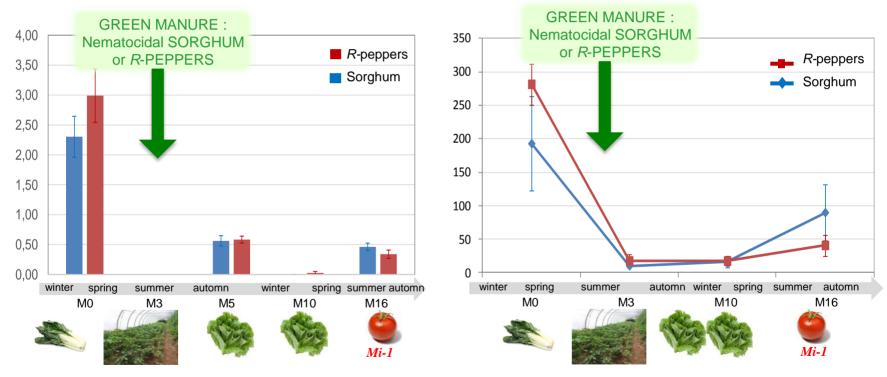


A few preliminary results

Sorghum as green manure : Efficient protection of pepper resistance by reducing RKN soil infestation, and soil ecology improved

> Decrease of RKN populations after Sorghum (>95% => protection of the pepper resistance)

> Increase of non-phytoparasitic species (= usefull saprophagous species => soil ecology improved)


A few preliminary results

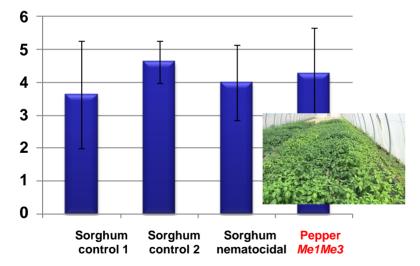
<u>R-peppers pyramided for Me1 and Me3 (durable R stable at high T°)</u> <u>as 'trap crop' green manure</u>: Efficient protection of tomato resistance

SI = Nb of nematodes in 1 kg of soil

GI = gall index (0-10)

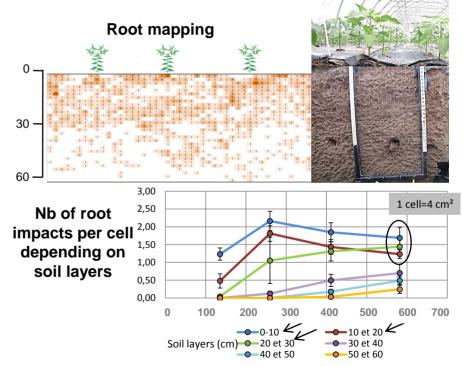
Green manure and trap crops: efficient to reduce GI on crops and soil infestation (SI)

A few preliminary results



Agronomic value of Me1Me3 peppers as 'trap crop' green manure :

a good potential as green manure, and assessment of soil colonization by pepper roots


What potential as green manure?

Comparison of buried dry matter (tonnes per hectare) for each green manure

Pepper buried dry matter is equivalent to that of traditionally-used sorghum

What potential of soil colonization by *Me1Me3* pepper roots to better trap nematodes?

Strong root colonization up to 30 cm depth allows to shorten culture from 10 to 7 weeks

1 Strategies to strengthen and increase the *R* durability

 \bigcirc

Choice of the *R*-genes (the more robust, linked to the *R* mechanism)

Choice of the genetic background (in which the *R*-gene is introgressed)

Combinaison of *R*-genes (pyramiding)

To prevent the selection of virulent nematodes

Djian-Caporalino et al. BMC Plant Biology 2014, Barbary et al. Theor Appl Biol 2014

in good agreement with: Brun *et al. New Phytol* 2010 (rapeseed-fungus), Palloix *et al. New Phytol* 2009 (pepper-virus), Fournet *et al. Plant Pathol* 2013 (potato-cyst nematodes)

2 New opportunities for breeding in Solanaceae

A good potential of *R*-peppers pyramided for *Me1* and *Me3* as 'trap crop' green manure

Durable R stable at high T°

Pepper buried dry matter is equivalent to that of traditionally-used sorghum A good potential of soil colonization by pepper roots to trap nematodes with a 7-week culture

• 1 Strategies to control RKN, limiting the use of chemicals and increasing the lifespan of *R*-varieties

Pyramiding > Alternating > Mixture of R-genes ⇔ Sequential use of a single *R*-gene introgressed in a R-background >> Sequential use of a single R-gene introgressed in a S background

To reduce the selection pressure of R-genes on the pathogens ; To 'recycle' broken R-genes (alternating different R-plants) ; To decrease the amount of pathogens in the soil

Djian-Caporalino et al. BMC Plant Biology 201

in good agreement with: Huang *et al. TAG* 2004, Singh *et al., TAG* 2001, Yoshimura *et al. Mol Breeding* 1995 (rice-bacteria), Hittalmani *et al. TAG* 2000, Zhu et al. *Nature* 2000, Mundt *et al. Euphytica* 2002 (rice-fungus), REX Consortium *Trends Ecol Evol* 2012 (adaptation of xenobiotic to drugs and pesticides)

2 Innovative, sustainable crop production systems

Intercropping management (solarisation, sorghum or *R*peppers as green manure) : efficient protection of plant resistance and reduction of RKN damages

Experiments still on going

