

Rencontres du GIS PIClég, 5 & 6 décembre 2012, Bordeaux

FertiPro FertiLeg Fertilisation et Santé des Plantes

Collaboration entre le GT2 et le GT4 du Gis PICLég

C. Raynal-Lacroix - P. Nicot - F. Lecompte

Partenaires techniques :
APREL, SERAIL, LCA/CVETMO, CATE, FREDON 62, CDDM
ARELPAL, CA13, CA84, CA47 et CA47

Objectifs

Utiliser la fertilisation pour agir sur la santé des plantes et favoriser leur protection vis-à-vis des maladies et ravageurs

Acquérir des connaissances, des références scientifiques et techniques

Intégrer la fertilisation dans les stratégies de Production Intégrée et limiter le recours aux produits phytosanitaires

Présentation

Espèces cibles

Modes de culture :

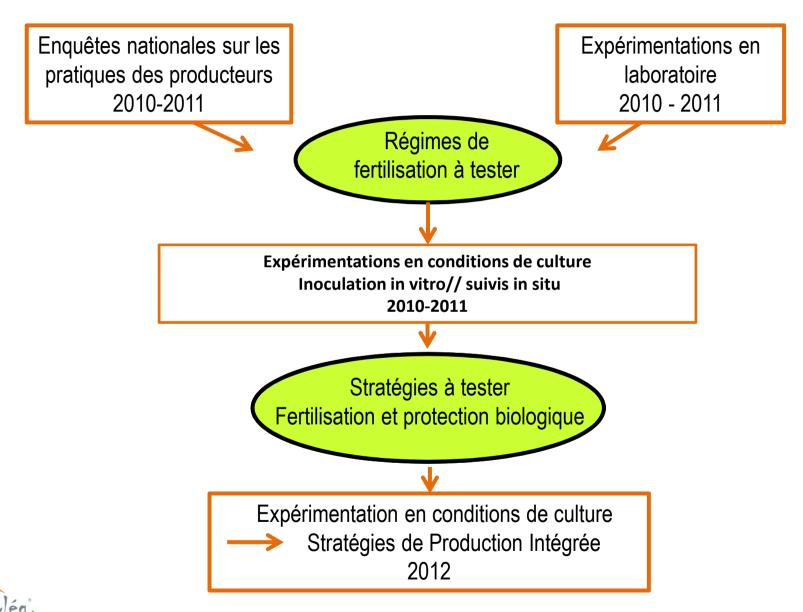
Tomate sous abri

Tomate hors-sol

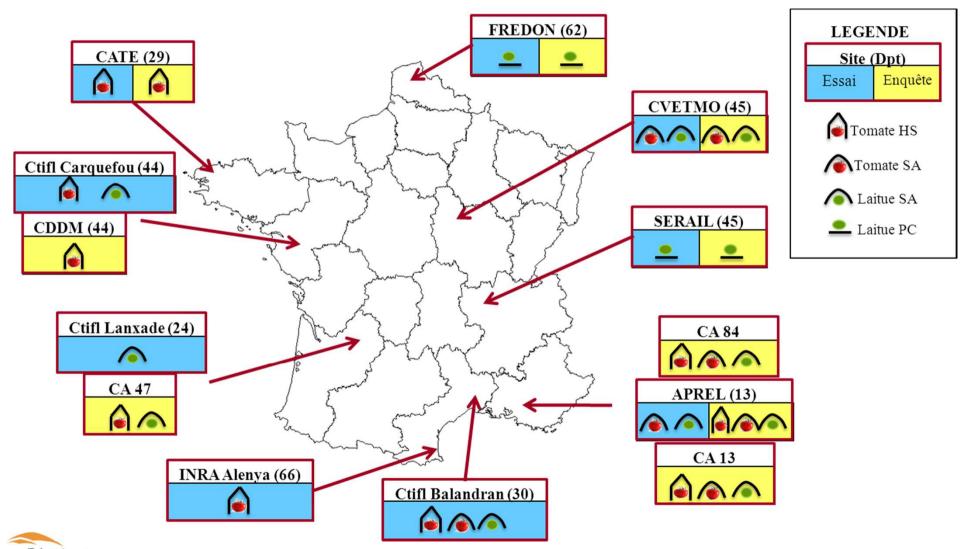
Laitue sous abri

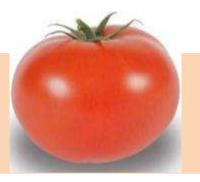
Laitue plein-champ

Bioagresseurs :



Botrytis, Oïdium, Aleurodes, Pucerons

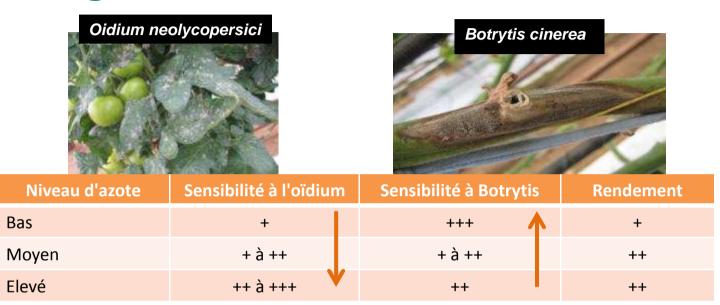

Botrytis, Sclérotinia, Rhizoctonia, Bremia, Pucerons


Les actions Fertipro - Fertileg

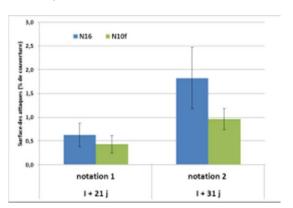
Répartition des enquêtes et essais en conditions de culture

Principaux résultats sur Tomate

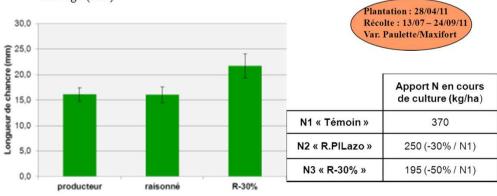
19 ESSAIS



10 ESSAIS


9 ESSAIS

Sensibilité de la tomate à Oïdium et Botrytis selon le niveau d'azote



Admiro/Maxifort 16/14 meN et 10/5 meNf

Attaques Oïdium selon le régime de fertilisation azotée (Feu. médiane.- Inoc. du 24/05/2012)

Longueur des chancres de Botrytis BC21 sur tige (mm)

Fertilisation azotée et protection biologique dans les stratégies de Pl

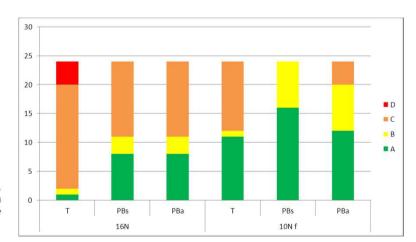
1ers résultats en conditions de production

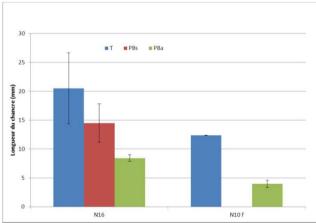
Ex. tomate

Niveau d'attaques de Botrytis (BC1) sur plaies d'effeuillages selon le régime de fertilisation avec ou sans protection biologique : notation à 8 jours Taille des chancres/Botrytis (BC1) selon le régime fertilisation azotée avec ou sans PB

Niveau A Le chicot n'est pas touché

Niveau B Début d'attaque




Niveau C Le chicot est touché en entier

La tige est touchée, il faut mesurer la longueur du chancre en mm

Niveau D

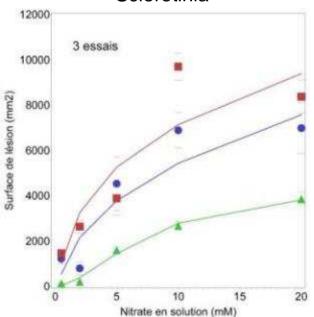
Effet de l'azote sur l'efficacité de la protection biologique

Principaux résultats sur Laitue

27 ESSAIS

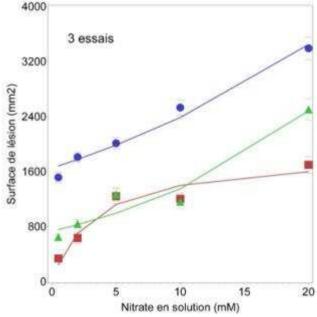
15 ESSAIS

12 ESSAIS



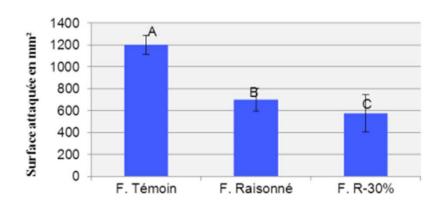
Sensibilité des laitues aux bioagresseurs selon le niveau d'azote

Au laboratoire, en milieu de culture contrôlé



Sclerotinia

Botrytis

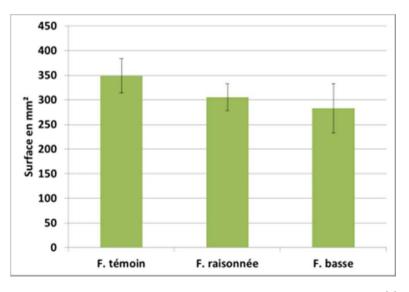


Sensibilité des laitues aux bioagresseurs selon le niveau d'azote

En conditions de culture

Plantation: 15/04/2011 Récolte: 26/05/2011 L. Batavia var. Tokapie

Attaques de *Sclerotinia minor* en fonction du régime de fertilisation azotée

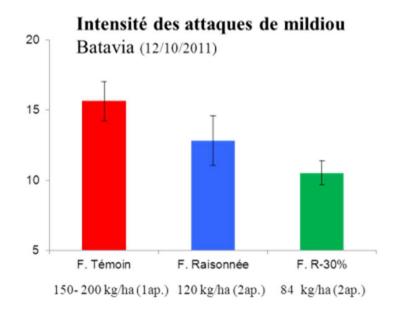

Apport N en cours de culture (kg/ha)

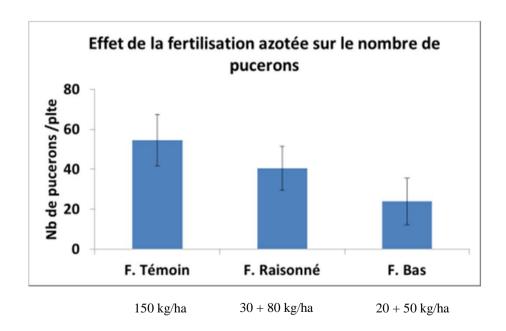
F. Témoin 200 (1 apport)

F. Raisonnée 52 (2 apports)

F. R-30% 38(1 apport)

Attaques de *Botrytis cinerea* (BC 21) en fonction du régime de fertilisation azotée




Effet azote sur d'autres bioagresseurs

Plantation: 28/08/2011 Récolte: 12/10/11

laitue b (Icaro) batavia (Joquonda)

Plantation: 29/03/2012 Récolte: 25/05/2012 L. Beurre var. Zorba

L'azote est un facteur aggravant

Conclusion

- De nouvelles références, bases pour l'évolution des pratiques
- Des économies significatives d'azote conciliant protection des plantes et production économique ?

	Economie d'azote	
Tomate	Culture hors-sol	→ 10 me/l
Tomate	Sous abri	30 à 45 %
Laitue	Sous abri, PC	20 à 50 %

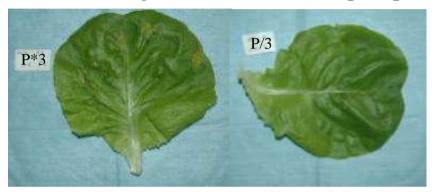
Des moyens à développer

Tomate hors-sol: baisser et moduler l'azote sur le cycle cultural

Tomate sous abri : OAD pour ajuster les apports aux besoins réels de la culture. Ex. PILazo®

Laitue : fractionner les apports et intégrer les fournitures du sol

 Manque d'éléments fondamentaux/conception globale du projet


Perspectives

Autres éléments fertilisants ?

Travaux en cours : influence du phosphore sur le mildiou de la laitue (Ctifl Lanxade)

Intensité des attaques de Bremia sous 4 régimes de fertilisation phosphatée

Projet sur Potassium (référence enquêtes)

Protection biologique et fertilisation

Des travaux à poursuivre sur les agents de PB dont les SDP

- Mieux intégrer les fournitures du sol
- Investir sur la gestion hydrique des cultures
- Nécessité de travaux fondamentaux pour comprendre les mécanismes en jeux

Connaissances nécessaires pour utiliser les différents facteurs dans une combinaison de moyens techniques assurant une meilleure santé des plantes, la qualité des productions et des milieux naturels

Diffusion des résultats FertiPro FertiLeg

4 publications	6 communications	2 posters
Phytopathology, 2012	IOBC-WPRS : Univ. Catania, Italie, 2012	IOBC-WPRS; Reims, 2012
Plant Pathology, 2010	Centre de Recherche en Horticulture, Univ. Laval, Québec, 2011	Rencontres de Phytopathologie, Aussois, 2012
Plant and Soil, 2012	Université de Béjaia, Algérie, 2012	
IOBC-WPRS bulletin, 2012	15 th International Botrytis Symposium, Cadix, Espagne, 2010	
	Journées MAPAQ Drummondville, Canada, 13 et 14 février 2012	

