

Rencontres PICLeg/DEPHY

St Pol de Léon - 03/10/2023

Plan

1. Présentation SEFerSol

Organisation du projet Expérimentation

2. Résultats du projet

Fertilité & Adventices Qualité de l'eau Résultats Technico-Economique

3. Focus sur la dissémination

Etudiants
Agriculteurs
Autres publics

- Organisation du projet
- Expérimentation

Organisation du projet

Une expérimentation sur 9 ans :

Organisation du projet

Porté par l'EPLEFPA Les Sillons de Haute Alsace :

avec 7 partenaires techniques :

et financé par :

Expérimentation

Mise au point de Stratégies innovantes

d'Entretien de la Fertilité du Sol

et de maîtrise de l'enherbement,

en maraîchage biologique

à l'échelle d'un système de culture

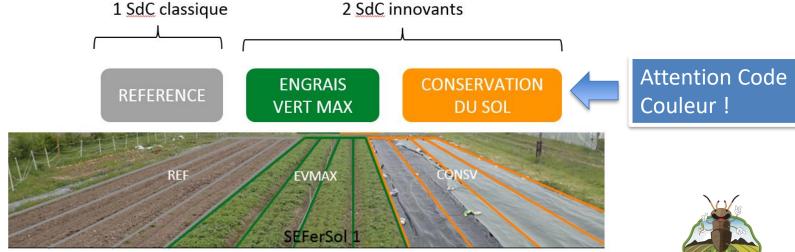
Expérimentation

Objectifs

- Améliorer la fertilité du sol tout en contrôlant les adventices
 - 2 Préserver la qualité des ressources en eau
 - 3 Augmenter l'autonomie vis-à-vis des intrants
- Atteindre au moins le même niveau de performance technico-économique que le système de culture REFERENCE

Expérimentation

Dispositif expérimental


Pourquoi?

En maraichage: utilisation intense du sol, rotations courtes...

En bio : problème de gestion de l'enherbement et de la fertilité du sol

Mode d'action:

→ Etablir 3 systèmes de cultures pour tester leur durabilité

REFERENCE

Utilisation des pratiques communes des maraîchers AB de la région

Travail du sol classique

Outils rotatifs utilisés

Fertilisation classique

Composts et amendements classique

Peu d'engrais verts (lorsque c'est possible en interculture d'automne /hiver)

ENGRAIS VERTS MAX

Maximisation des engrais verts entre et pendant les cultures

Travail du sol en planches permanentes avec outils adaptés

Outils non rotatifs de travail du sol

Pas de fertilisation

Composts et amendements raisonnées

Systématisation des engrais verts (Interculture, intercalaire)

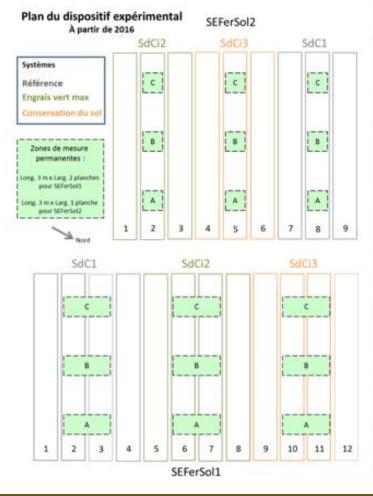
CONSERVATION DU SOL

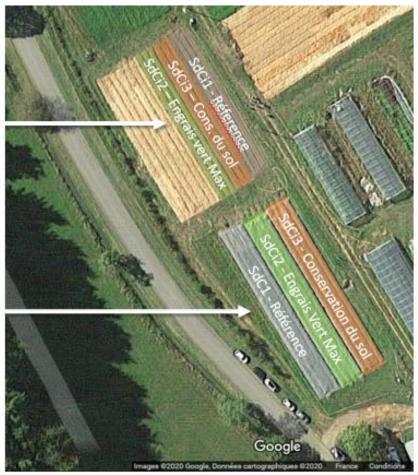
Utilisation de la couverture du sol la plus permanente possible et limitation du travail du sol

Travail du sol en planches permanentes avec outils adaptés

Limitation forte du travail du sol (outils non rotatifs et travail localisé)

Fertilisation raisonnée (méthode de bilan)


Composts et amendements raisonnés


Couverture du sol la plus permanente possible

Expérimentation

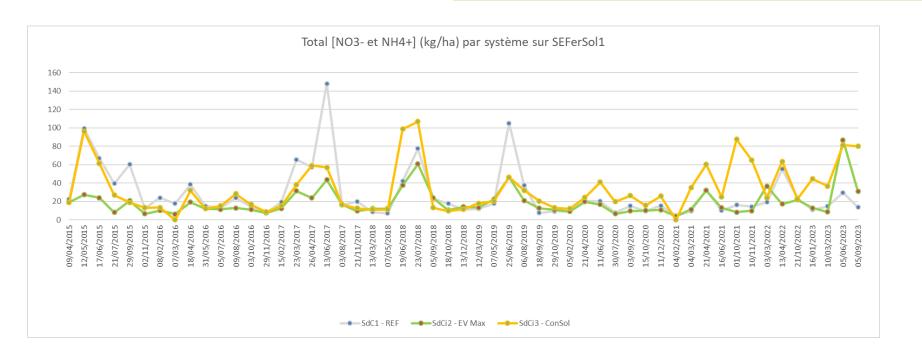
Parcelles expérimentales

Expérimentation

Succession de cultures

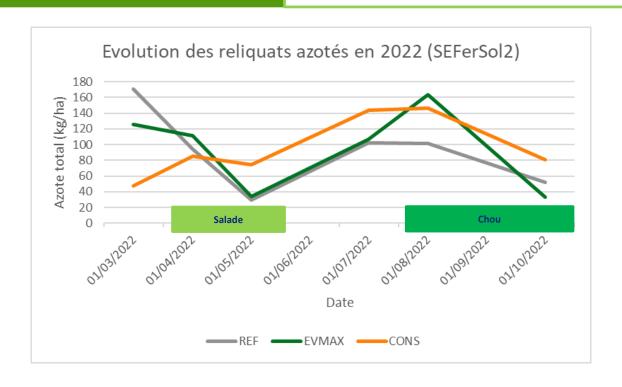
Une même succession de cultures pour les 3 systèmes :

	Année 1	Année 2	Année 3	Année 4	Année 5
					-
SEFerSol 1	2015 et 2020	2016 et 2021	2017 et 2022	2018 et 2023	2019
SEFerSol 2	2016 et 2021	2017 et 2022	2018 et 2023	2019	2020



- > Fertilité du sol
- Qualité de l'eau
- > Technico-Economique

Fertilité du sol


Reliquats azotés

Fertilité du sol

Focus Azote 2022

Fertilité du sol

Résultat Matière Organique

2015/2016

MO SEF 1	REF	EVMAX	CONS
MO totale	3,54	3,18	3,26
MO libre	0,88	0,55	0,69
MO liée	2,65	2,63	2,57
% MO liée	74,86%	82,70%	78,83%

MO SEF 2	REF	EVMAX	CONS
MO totale	3,37	3,42	3,15
MO libre	0,72	0,84	0,71
MO liée	2,65	2,58	2,44
% MO liée	78,64%	75,44%	77,46%

2023

MO SEF 1	REF	EVMAX	CONS
MO totale	5,1	4,2	6,00
MO libre	1,4	0,8	2,20
MO liée	3,8	3,4	3,80
% MO liée	74,51%	80,95%	63,33%

MO SEF 2	REF	EVMAX	CONS
MO totale	5,7	5,4	7,2
MO libre	1,3	1,2	2,5
MO liée	4,4	4,2	4,7
% MO liée	77,19%	77,78%	65,28%

Fertilité du sol

Rapport MO/Argile

	Rapport MO/argile
REF	32%
EVMAX	36%
CONS	41%

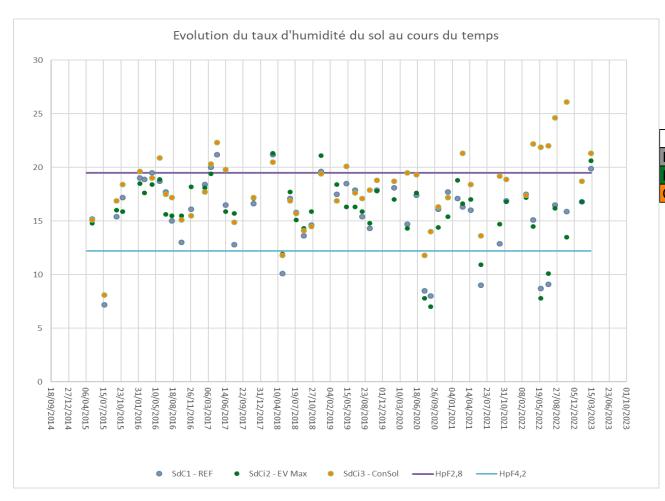
L'optimal est à 24%

Fertilité du sol

Différence éléments majeurs

			2015			2023	
	SEF1	REF	EVMAX	CONS	REF	EVMAX	CONS
હ	Phosphore P2O5 Dyer (g/kg)	0,42	0,43	0,41	0,52	0,31	0,49
ajeni	Potasse K2O (g/kg)	0,35	0,23	0,2	0,41	0,16	1,13
éléments majeurs	Magnésie MgO (g/kg)	0,26	0,25	0,23	0,32	0,31	0,38
ents	Chaux CaO (g/kg)	2,23	2,12	1,97	3,63	3,22	3,27
lém	Sodium Na2O (g/kg)	0,03	0,02	0,02	0,014	0,028	0,016
Φ,	K2O/MgO (g/kg)	1,3	0,9	0,9	1,3	0,5	3,0
ts	Fer (mg/kg)	97,8	108	113	87	79	78,7
nen	Manganèse (mg/kg)	4,2	4,9	6,9	10,4	6,3	6,6
oligo-éléments	Zinc (mg/kg)	0,93	1,3	1,2	1,5	2	2,8
-o <u>gil</u>	Cuivre (mg/kg)	2	1,6	1,8	1,8	1,2	1,4
Ō	Bore (mg/kg)	0,37	0,34	0,32	0,54	0,43	0,87

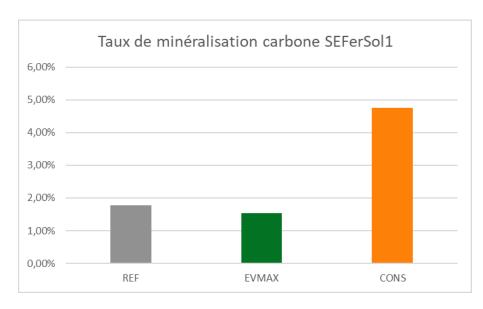
Fertilité du sol

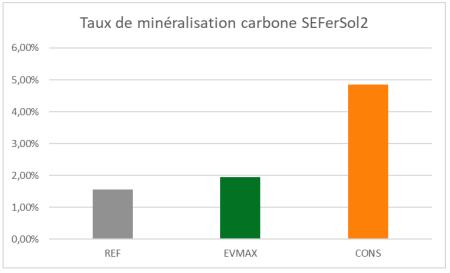

Différence éléments majeurs

			2016			2023	
	SEF2	REF	EVMAX	CONS	REF	EVMAX	CONS
ર	Phosphore P2O5 Dyer (g/kg)	0,58	0,56	0,57	0,4	0,43	0,57
) ajeul	Potasse K2O (g/kg)	0,27	0,22	0,22	0,35	0,25	1,18
éléments majeurs	Magnésie MgO (g/kg)	0,3	0,26	0,25	0,29	0,37	0,51
ents	Chaux CaO (g/kg)	2,6	2,47	2,29	2,98	4,14	4,46
lém	Sodium Na2O (g/kg)	0,01	0,02	0,01	0,018	0,028	0,035
Φ,	K2O/MgO (g/kg)	0,90	0,80	0,90	1,2	0,70	2,30
lts	Fer (mg/kg)	114	97	76,6	97,9	58,9	79,8
nen	Manganèse (mg/kg)	3,9	12,7	8,3	15,2	3,5	12,6
oligo-éléments	Zinc (mg/kg)	1,2	1,2	0,93	2,5	3,4	5
ligo-	Cuivre (mg/kg)	3,3	2,3	2,6	1,9	1,7	1,9
Ō	Bore (mg/kg)	0,29	0,34	0,36	0,55	0,67	1,2

Fertilité du sol

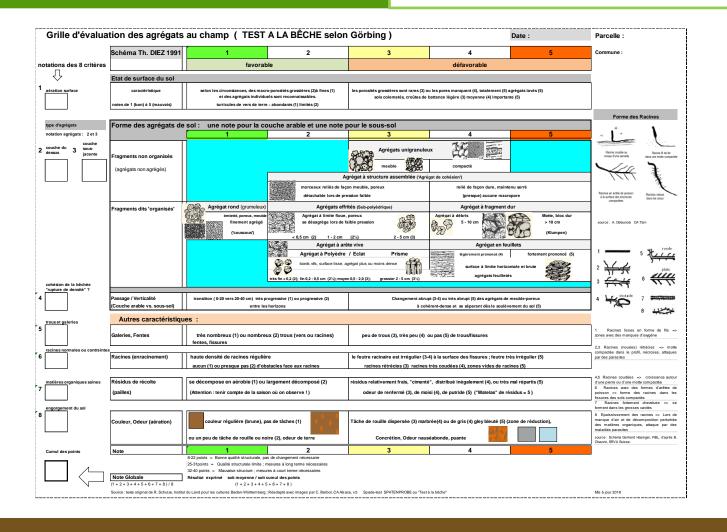
Taux d'humidité



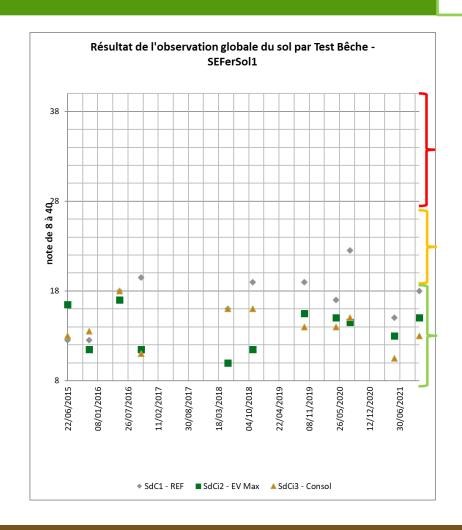

	Taux d'humidité moyen (eau, %)
REF	15,8
EVMAX	15,8
CONS	18,0

Fertilité du sol

Minéralisation



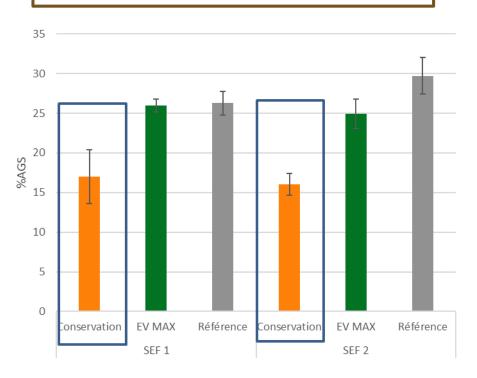
Fertilité du sol


Test à la bêche

Fertilité du sol

Test à la bêche

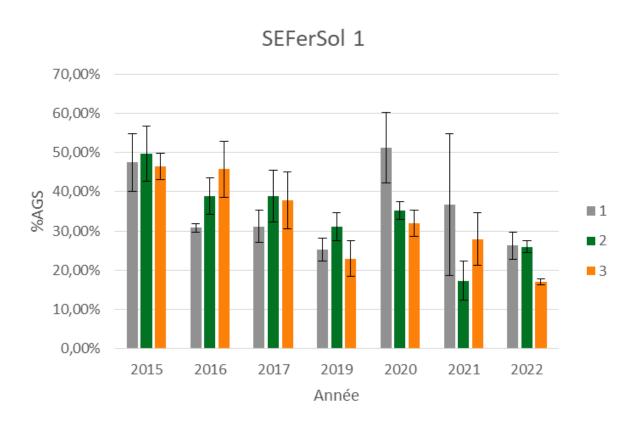
Note moyenne Test Bêche


REF	EVMAX	CONS		
17,29	13,64	13,50		

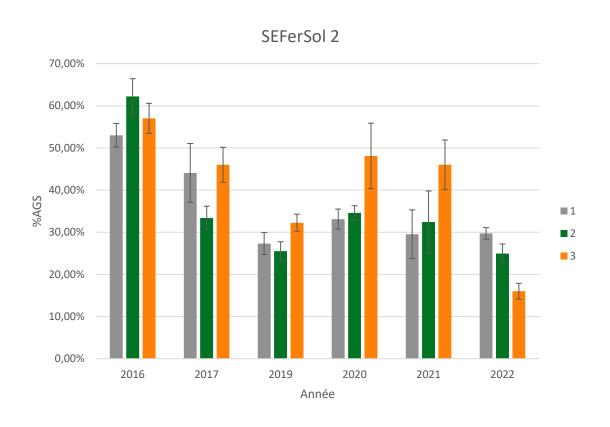
Fertilité du sol

Stabilité des agrégats

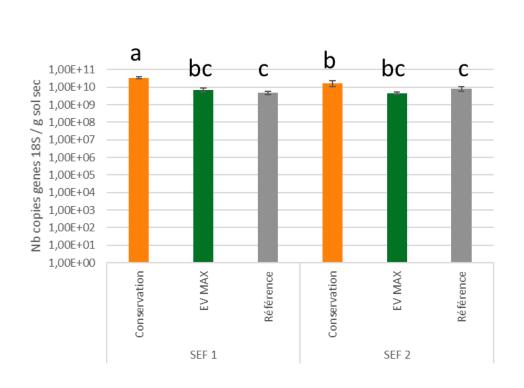
% agrégats stables à l'eau (Avril 2022)

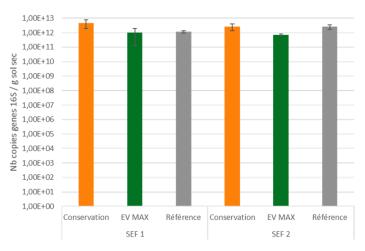


Un résultat surprenant ?

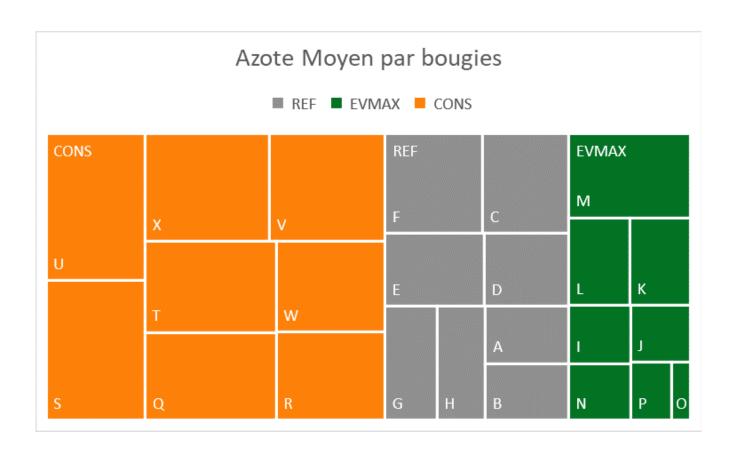

Fertilité du sol

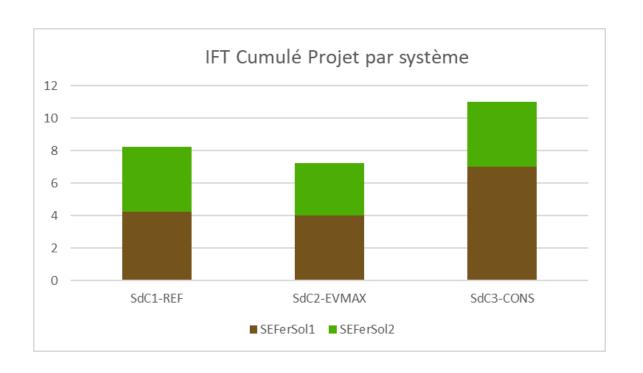
Stabilité des agrégats


Fertilité du sol


Stabilité des agrégats

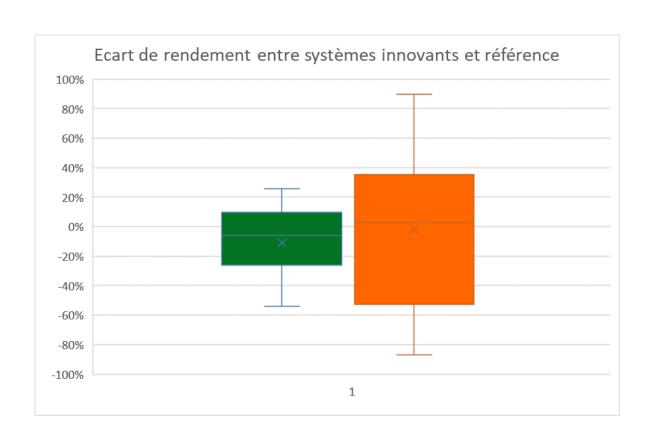
Fertilité du sol


Biomasse microbienne


Qualité de l'eau

Nitrates dans l'eau de drainage

Technico-économique


Phytosanitaires

Technico Economique

Rendements

CONS

Chou 2016: -87%

Chou 2021: +90%

3 principaux publics :

- Etudiants
- Maraichers
- Conseillers

Etudiants

Participations aux travaux

Aperçu direct et pratique des techniques spécifiques aux systèmes innovants

Etudiants

Participations aux relevés et analyses

Explications des indicateurs suivis, réalisation des mesures et des analyses quand possible

Etudiants

Participations de toutes les spécialités

Lien entre les étudiants horticulture et labo autour de l'expérimentation

Etudiants

Participations des élèves aux visites

Participation des élèves aux visites SEFerSol – Lien avec les professionnels

Etudiants

Des communications hors de l'EPL

JOURNÉE TECHNIQUE ECOPHYTO'TER LUNDI 22 MAI

Participation à des évènements pour échanger autour des résultats

Maraichers

Des communications en ligne

Sur le site internet

www.polemaraichage.com/experimentations/sefersol/

Sur la page Facebook

→ « Projet SEFerSol – Maraichage biologique »

L'un pour un suivi régulier, l'autre pour des analyses plus poussées

Maraichers

Des visites thématiques

2 visites par an, sur site expérimental ou non

Maraichers

L'accueil de groupe ou la visite

Accueil et déplacement hors région pour propager les résultats

Maraichers

La publication dans des revues agricoles

Des résultats prometteurs sur la vie biologique

Les résultats de trois projets menés actuellement en maraîche en évidence un vrai gain pour la vie biologique en cas de rédu du sol. Ce constat s'applique à toutes les techniques alterni C'est plus complexe sur le plan de la fertilité physique du sol.

trip-till, paillage, scalpeur, occultation, engrais vert..., la réduction du travail du sol est à l'honneur, ce 29 novembre au centre CTIFL de Balandran dans le Gard, lors la journée technique « Légumes en agriculture biologique », co-organisée avec l'Itab. Trois projets de recherche sont présentés sur les alternatives au labour en maraîchage bio : Clef de Sol mené en Pays de la Loire, Serfersol en Alsace et l'amélioration de la fertilité du sol en production de melon bio dans le Sud-Est. Chacun vise à simplifier le travail du sol pour améliorer la qualité biologique dans les horizons cultivés. Ce, pédoclimatiques locaux. afin d'en augmenter la fertilité biologique, physique et chimique et in Premier révélateur : fine, la productivité. De nombreuses le tassement du soi mesures sont effectuées pour scruter Dans le Gard, le projet « Améliorer la attentivement l'évolution de la qua- fertilité du sol en production de melons lité biologique des sols. Si les résultats se rejoignent sur certains points, ils peuvent également être assez 'organiques » se concentre sur deux de 5 cm », rév différents concernant la structure alternatives au labour : le strip-till et nieure de rec du sol ou les rendements obtenus. Ces trois projets mettent'en lumière l'importance d'adapter les itinéraires constats est l'impact sur le tassement

Parcelle d'essai d'amélioration de la fertilité du sol en melon menée

techniques à la diversité des contextes du sol. Si le str

bio grâce à la réduction du travail du sol et à des apports d'amendements le scalpeur pour l'implantation d'une parcelle de melon. L'un des premiers

tats relativem avec un sol se sement, ce n peur Actisol. outil les deux travailler le so année, le sol e Publication au sein de revues professionnelles ou de filière

Autres publics

Séminaires et conférence

Participation à des conférences et séminaires auprès de différents publics

Grand public

Vulgariser les résultats

Animation auprès du grand public. Présentation des résultats, transfert des pratiques

Pour aller plus loin...

Sur le site internet

www.polemaraichage.com/experimentations/sefersol/

Sur la page Facebook

→ « Projet SEFerSol – Maraichage biologique »

En nous contactant:

Elie Langard – Chargé de mission SEFerSol

→ elie.langard@educagri.fr

Fertilité du sol

Nitrates dans l'eau drainante

