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Abstract

Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are
available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From
a structural point of view, these genes often harbour NBS–LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat
region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from
wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with
other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both
the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring
quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and
spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful
management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of
RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices
will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes
and maintain their durability.
© 2015 Society of Chemical Industry

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
The Solanaceae family comprises between 3000 and 4000
species in some 95 genera, the largest of which is Solanum,
with 1500–2000 species, almost half the diversity of the family.
Many of these species have considerable economic importance
as crops, including tomato (Solanum lycopersicum), potato (S.
tuberosum), pepper (Capsicum annuum), eggplant (S. melongena)
and tobacco (Nicotiana tabacum). For example, potato represents
more than 42% of the roots and tubers produced worldwide for
food, while tomato, pepper and eggplant together account for
more than 20% of the vegetables produced worldwide and more
than 50% of the harvested area of vegetables (Table 1). These
crops are cultivated in most tropical and temperate parts of the
world, in open fields or under plastic tunnels and greenhouses,
in the context of either sustainable agriculture or high-input
commercial production.

Like other plants, solanaceous crops are the targets of a wide
range of pathogens and pests, including nematodes. In particular,
root-knot nematodes (RKNs) of the genus Meloidogyne are among
the most damaging nematode species attacking these plants. The
typical morphological response of compatible plants to infection
by RKNs is root galling (Fig. 1), which alters water and nutrient
uptake by the root system, resulting in a subsequent reduction in
plant growth and yield.1 In addition, the quality of the harvest may

also be significantly altered in the case of root or tuber production,
e.g. potato (Fig. 1). Because of the severity of the disease they
cause on a broad range of plant hosts, RKNs have been ranked first
among the top ten plant-parasitic nematodes,2 and M. incognita
has been regarded as possibly ‘the single most damaging crop
pathogen in the world’.3

Successful control of plant nematodes is often the result of
the integrated use of various pest management strategies, e.g.
chemical pesticides, resistant crop cultivars and cultural practices.
However, some of these approaches are becoming increasingly
unsatisfactory. Although widely practised, crop rotation is of lim-
ited value in the case of RKNs because of their extremely wide host
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Table 1. FAO world statistics for major Solanaceous crops for the year 2012a

Production (106 t)
Percentage of

world production Area harvested (106 ha)
Percentage of

world harvested area

Eggplant (Solanum melongena) 48.42 4.38c 1.85 3.23e

Pepperb(Capsicum annuum) 34.52 3.12c 3.90 6.81e

Potato (S. tuberosum) 364.81 45.08d 19.20 34.69f

Tobacco (Nicotiana tabacum) 6.33 – 3.93 –
Tomato (S. lycopersicum) 161.79 14.63c 4.80 8.38e

a Information source: http://faostat3.fao.org/compare/E
b Including dry and green pepper.
c,ePercentage of world production and harvested area, respectively, of vegetables.
d,fPercentage of world production and harvested area, respectively, of roots and tubers.

Figure 1. (A) Infective second-stage juvenile of Meloidogyne incognita.
Bar= 15 μm. (B) Galls on a potato tuber infested with M. chitwoodi. (C)
Root systems of a susceptible (right) versus resistant (left) tomato cultivar
inoculated with M. incognita.

range encompassing the vast majority of the flowering plants.3

The environmental and health concerns raised against nemati-
cides and soil fumigants has led to the withdrawal of most of
these chemicals in many locations, which further emphasises the
need for alternative and durable control strategies. In this context,
plant resistance appears to be the most attractive approach for
controlling nematode populations from environmental, economic
and practical points of view. Indeed, natural resistance (R) genes
against some RKNs have been identified, mapped and cloned
in a number of plant species, including Solanaceae.4 Transgenic
approaches for artificial RKN resistance have also been proposed,
involving a battery of effectors active against the nematode or its
feeding site within the root.5 – 7

Review articles have covered comprehensively the abun-
dant literature devoted to the structure and function of R
genes in solanaceous plants,8 and the mechanisms of plant
resistance to nematodes.4,7 Here, our aim is to assess the diver-
sity of the natural R genes against RKNs currently cloned or
mapped in wild and cultivated Solanaceae, and to evaluate the

prospects for their introgression into new cultivars using clas-
sical breeding or transgenic expression. Further information on
the possible limitations in the use of these R genes under field
conditions will also be provided, in order to give end-users (i.e.
plant breeders and growers) objective elements and prospec-
tive comments about the development and implementation
of natural R gene-based control strategies against RKNs in
solanaceous crops.

2 MAJOR R GENES AGAINST RKNS IN WILD
AND CULTIVATED SOLANACEAE
Although nematode resistance in general can result from (the
combination of) several types of genetic determinant, including
major/minor genes and quantitative trait loci (QTLs),4,9 RKN resis-
tance in solanaceous crops is mainly dominant and conferred by
single major dominant genes (supporting information Table S1). In
addition, one recessive gene has been hypothesised in the pepper
cultivar ‘Carolina Wonder’,10 associated with the dominant R gene
named N.11,12 Very recently, four QTLs have also been identified in
pepper (see detailed discussion below).

Mapping studies indicate that genes conferring resistance to var-
ious pathogens, including RKNs, are often organised in clusters in
Solanaceae. For example, the N and the Me genes (i.e. Me1, Me3,
Me4, Mech1 and Mech2) conferring resistance to RKNs, two QTLs
conferring resistance to Phytophthora capsici and potyviruses PVY
(0) and PVY (1, 2) and the Bs2 gene conferring resistance to the bac-
terium Xanthomonas campestris pv. vesicatoria have been mapped
to the same region of the pepper P9 chromosome.13 – 16 Similarly,
the Mi-3 and Mi-5 RKN R genes and the powdery mildew Leveil-
lula taurica R gene Lv have also been mapped in a single cluster
on the T12 chromosome of tomato.17 – 19 The nematode resistance
genes Gpa2 and MfaXII, which control pathotype Pa2 of the potato
cyst nematode Globodera pallida and the RKN M. fallax20,21 respec-
tively, have been mapped to the distal end of potato chromo-
some XII, together with a R gene to potato virus X (Rx1).22,23 As the
presence of transposable elements has been correlated both with
large-scale genomic rearrangements24,25 and with genomic clus-
ters carrying R genes against several plant pathogens, including
oomycetes and bacteria,26,27 they may play a role in the creation
and maintenance of such clusters in Solanaceae.28 As an example,
the sequencing of the P9 chromosome of pepper (carrying the Me
gene cluster) highlighted how genome expansion due to trans-
posable elements and duplication lead to the emergence of new
genes and functions or ‘neofunctionalisation’.29 In this genomic
region, 82 paralogues of the Bs2 family of R genes were identified in

wileyonlinelibrary.com/journal/ps © 2015 Society of Chemical Industry Pest Manag Sci (2015)



Host genetic resistance to root-knot nematodesin Solanaceae www.soci.org

A B C

Figure 2. Schematic representation of the comparative mapping of nema-
tode resistance loci in pepper, tomato and potato. Position of nematode
R genes as determined from linkage to common markers on (A) an inte-
grated map of the pepper chromosome P9,103 (B) the tomato chromosome
T1217,18 and (C) the potato chromosome XII.20,74 The putative alignment of
markers between A, B and C is indicated by dotted lines. Distances are given
in centimorgans (cM).

pepper, whereas in the corresponding genomic region only three
paralogues where found in potato (namely the Rx, Rx-2 and Gpa-2
genes) and two paralogs with unknown function in tomato.30 From
an evolutionary point of view, the clustering of R genes may facili-
tate the coordination of plant defences against various pathogens
and the generation of new specificities towards an ever-changing
array of pathogens.23,31,32

Comparative studies have shown that homologues of cloned R
genes map to syntenic positions in solanaceous genomes, sug-
gesting that both the sequence and position of these genes
are conserved.28,33,34 For example, R genes in several Solanum
species against alfalfa mosaic virus, Gemini viruses, bacterial
pathogens, the oomycete Phytophthora infestans and the fungus
Oidium neolycopersici map to the tomato Mi-1 region of chromo-
some 6.35 – 39 The Me and N genes of pepper have been assigned
to an interval equivalent to that containing Mi-3 and Mi-5 in
tomato in the vicinity of the RFLP marker CT135, and Gpa2 and
MfaXII in potato in the vicinity of CT79, which cosegregates with
CT135 in tomato (Fig. 2).16 These comparative mapping data sug-
gest that the three clusters of R genes conferring resistance to
nematodes are located in orthologous genomic regions of pep-
per, tomato and potato, and that these regions are conserved
within and between species in these solanaceous crops. From a
structural point of view, evidence is accumulating that NBS–LRR
motifs [i.e. a nucleotide binding site (NBS) and a leucine rich
repeat (LRR) region near the carboxy terminus] are common in
R genes against nematodes, including R genes from solanaceous
species, assuming that differential numbers of repeats and of TE
sequences may disturb the colinearity in microsyntenic genomic
regions. The R genes containing such NBS–LRR motifs may have
evolved by divergent evolution from an individual ancestral gene
in Solanaceae.40

3 PLANT GENETIC BACKGROUND, QTLS AND
THE EXPRESSION OF R GENES
Even if the RKN resistance conferred by major R genes is the-
oretically regarded as complete, variation is regularly observed
in the field, with some resistant plants/accessions exhibiting a
low but varying number of egg masses on their root systems.
In some studies, a dosage effect of the R gene has been pro-
posed to explain these observations, with expression of the resis-
tance being more effective in homozygous versus heterozygous
plant genotypes. Although this hypothesis was raised for the
tomato Mi-1.2 R gene,41,42 other experiments led to the oppo-
site conclusion for both the tomato Mi-1.2 and the pepper Me3 R
genes when the R gene was introgressed in homogeneous genetic
backgrounds.43 – 45

In solanaceous crops, the genetic background associated with
the R gene(s) [i.e. concomitant occurrence of genes (QTLs) with
quantitative effects] is of prime importance for both the expres-
sion of the resistance and its durability, as shown for a wide
range of pathogens, including viruses, oomycetes, fungi and
nematodes.45 – 51 For example, in a combination of field and green-
house systems, the durability of resistance to the cyst nematode
Globodera pallida was shown to be variable in different potato
genotypes harbouring the same resistance factor but differing in
their genetic background.49 However, only a few QTLs involved
in RKN resistance have been identified in a few diverse crops,
e.g. sweet potato, cotton, soybean and peanut,52 – 55 and none
in the Solanaceae. Very recently, quantitative resistance to RKNs
was detected in some pepper accessions.45,56 A QTL analysis for
resistance to the three main RKN species, M. incognita, M. are-
naria and M. javanica, in a cross between a partially resistant
and a susceptible pepper line yielded four new QTLs localised on
two separate clusters: three QTLs clustered on chromosome P1
with each active against one of the three RKN species, and one
QTL active against M. javanica on chromosome P9 (Barbary et al.,
unpublished). Interestingly, this is the first time that RKN resis-
tance factors have been identified on pepper chromosome P1. The
favourable allele at these QTLs originated from the partially resis-
tant pepper genotype. This same genotype was previously shown
to contain a genetic background increasing the expression of the
Me1 or Me3 major genes.45 Thus, pyramiding such QTLs with the
major R gene(s) into one cultivar is expected to provide a complete
and durable resistance by taking simultaneous advantage of the
resistance provided by major R genes and the reduction in the level
of infestation by QTLs. Such genetic combinations in resistant cul-
tivars should decrease the risk of resistance breakdown by RKNs;
indeed, reducing the number of egg masses produced on the roots
of resistant cultivars should reduce the risk of emergence and fur-
ther selection of adapted variants and consequently increase the
durability of the R genes, as demonstrated by several studies on
different pathosystems.46,57 Therefore, it is of crucial importance
for breeders to take into account the genetic background into
which they introgress major R genes, in order to increase their
efficiency and likely improve the longevity of new elite varieties
released on the market.

4 BIOTECHNOLOGICAL APPROACHES IN
BREEDING PROGRAMMES
Although the availability of R genes against RKNs is rather good
in the Solanaceae, most of these genes originate from wild rel-
atives of the cultivated species, and their introgression into elite
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cultivars via traditional breeding, along with the elimination of
undesirable agronomic traits that may be tightly linked to them,
is a laborious and time-consuming process that can take up to
10–15 years. For example, even though at least nine R genes for
RKN resistance have been identified in wild tomato and more than
ten in wild pepper accessions, only two of them are widely avail-
able in commercial varieties, i.e. Mi-1.2 and N in tomato and pep-
per respectively.11,12,57 – 63 In some instances, however, this pro-
cess can be considerably accelerated by using molecular mark-
ers linked to the R gene of interest, and marker-assisted selec-
tion (MAS) has been estimated to reduce the time to market by
50–70%.64 For example, several PCR-based markers (CAPS, RAPD
and SCAR) linked to the Mi-1.2 gene have been routinely used
in tomato breeding programmes for selecting for RKN resistance
(supporting information Table S1). Similarly, STS markers closely
linked to the RMc1(blb) gene encoding resistance to the Columbia
RKN (M. chitwoodi) have provided an efficient alternative to green-
house and field phenotypic screening to follow the introgres-
sion of RMc1(blb) into advanced potato breeding lines.65 Moreover,
with the recent advances in genome sequencing, new and more
informative PCR-based markers [e.g. single nucleotide polymor-
phisms (SNPs)] will further facilitate the use of MAS in plant breed-
ing, including solanaceous crops. In this connection, the recent
release of the reference genome sequences of potato, tomato
and pepper (available at http://solgenomics.net/genomes/) pro-
vides pertinent information and tools to align genomic regions
of interest and explore syntenic regions among the Solanaceae,
thereby facilitating the establishment of more effective breeding
programmes.29,30,66,67

Alternatively, in order to shorten the duration of classical intro-
gression steps or to overcome the problems linked to interspe-
cific crosses, the transfer and transgenic expression of natural R
genes into related susceptible crops have been investigated in ini-
tial proof-of-concept studies employing the tomato Mi-1.2 gene as
a model system. Compared with induced translocation and intro-
gression breeding, cisgenesis (i.e. transfer of a gene of interest
from the same or a crossable botanical species) is considered as
an improvement for gene transfer.68 However, when this strategy
was applied to tomato, a reduction in Mi-1.2-mediated RKN resis-
tance was noted in the T2 transformed lines, and was more pro-
nounced in the T3 generation. In addition, the variability of insta-
bility in resistance among clonally propagated cuttings indicated
that resistance levels may be influenced by epigenetic effects.69

Heterologous Mi-1.2 transformation of other Solanaceae led to
contrasting results, with RKN resistance conferred to transgenic
eggplant,70 but not to tobacco.71 More recently, ectopic expression
of Mi-1.2 conferred resistance to RKNs in lettuce.72 Overall, there
has been limited success with transgenic expression of natural R
genes from and in solanaceous crops. Alternative biotechnological
approaches under investigation mostly concern (i) the overexpres-
sion of peptides or proteins that disrupt essential phases of the
plant–nematode interaction (e.g. chemoreception, digestion) or
(ii) the plant-delivered RNAi to silence nematode genes essential
for the parasite to complete its life cycle.5

5 PRACTICAL LIMITATIONS OF THE USE OF
NATURAL R GENES IN SOLANACEAE
Although the deployment of natural R genes may be the most
attractive strategy for controlling RKN populations in solanaceous
crops, a number of factors potentially limit their effective use.
Firstly, prospecting for and evaluating new genetic resources are

long processes, with no guarantee that resistance will be identi-
fied: presently, no major resistance against M. enterolobii has been
found in Solanaceae. In several cases, resistance factors have been
identified in wild relatives (supporting information Table S1) with
poor cross-compatibility with the targeted cultivated species, lim-
iting exploitation in breeding programmes. In potato, several wild
species have been the source of RKN resistance, including, among
others, S. sparsipilum for resistance to M. incognita and M. fal-
lax21,73 and S. bulbocastanum for resistance to M. chitwoodi and M.
hapla.74 In tomato, broad searches of wild germplasm identified
several sources of RKN resistance, almost all in the heterogeneous
S. peruvianum complex, which exhibited a high level of incom-
patibility with the cultivated species, S. lycopersicum.71 The most
commonly used resistance gene, Mi-1.2, was introgressed into S.
lycopersicum through in vitro culture of immature hybrid embryos
that permitted the recovery of one F1 interspecific hybrid,75 which
has long been considered as the sole source of all RKN resis-
tance in currently available fresh-market and processing tomato
cultivars.71 Moreover, in addition to the difficulties encountered
in successfully crossing wild and cultivated relative species, alle-
les with unfavourable horticultural traits linked to RKN resistance
in the original resource (linkage drag) may slow down progress.

None of the currently known R genes in Solanaceae confers resis-
tance to all RKN species, and thus the more or less narrow range of
controlled species constitutes another practical limitation of resis-
tant cultivars to manage these pests in infested fields. Interestingly,
the most frequently used R genes in breeding, i.e. Mi-1.2 in tomato
and N, Me1 and Me3 in pepper, control the major RKN species
M. arenaria, M. incognita and M. javanica.71,76,77 However, other R
genes are more specific and confer resistance to one single RKN
species (e.g. Mech1 or Mech2 against M. chitwoodi in C. annuum),16

or even to one or a few isolates from one species (e.g. Me2, Me4
and Me5 in C. annuum, which are active against a few isolates
from only one species).77,78 In addition, some major RKN species
are not controlled by the R genes identified so far in solanaceous
crops; for example, no resistance has been characterised in tomato
against M. hapla.71 Of particular concern is the case of M. enterolo-
bii, a tropical, invasive RKN species able to develop and reproduce
on most solanaceous crops, including resistant tomatoes (Mi-1.2
gene), potatoes (Mh gene) and bell and sweet peppers (N, Tabasco,
Me(s) gene).79 Very recently, one C. chinense accession was consid-
ered to be resistant to M. enterolobii in experimental tests,80 but
this promising result still requires validation under agronomic con-
ditions. Obviously, such variability in the specificity of the R genes
available limits the use of resistant cultivars to manage RKNs, and
should be taken into account when experimentally evaluating new
plant genotypes for resistance, which requires an unambiguous
identification of the nematodes used as inoculum source.

Although the expression of most R genes from solanaceous
crops is not affected by high soil temperatures (e.g. Me1 and Me3
from pepper are still active at 42 ∘C),77 there are a few notable
exceptions. Probably the most documented case is that of the
tomato Mi-1.2 gene, which is inactive at constant soil temperatures
above 28 ∘C,81 a temperature common in tropical regions or green-
houses. Also, bell pepper cultivars harbouring the N gene exhib-
ited a partial loss of resistance to RKNs at 28 and 32 ∘C in growth
chamber experiments at constant soil temperatures.60 However,
resistance of the same cultivars did not break when tested in
M. incognita-infested fields in Florida, where soil temperatures
exceeded 30 ∘C,63 thereby indicating that these cultivars represent
viable options for managing M. incognita in bell pepper in subtrop-
ical environments.
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Several R genes against RKNs have been routinely deployed in
commercial cultivars of solanaceous crops, the most widely used
being the tomato Mi-1.2 gene.71 For more than 70 years now,
although some other R genes have been identified in the wild
tomato S. peruvianum,58 Mi-1.2 has been the only source of resis-
tance in tomato production against RKNs. Clearly, the extensive
use of the same R gene at a large scale may result in the emergence
and spread of virulent nematode populations able to overcome it,
and Mi-1.2-resistance-breaking populations in tomato have been
discovered, as have N- and Me3-resistance-breaking populations
in pepper.82 – 87 Such ability to overcome plant resistance may thus
constitute a severe limitation for RKN control. However, it should
be noted here that selection for virulence may not be successful
with all RKN populations or against all resistance genes.88 Indeed,
in practice, Mi-1.2 resistance remains efficient in most agronomical
situations, in spite of its continuous use for decades, and should
be considered as a very stable R gene in terms of durability at the
worldwide scale. This stability may partly result from the fact that
RKN species are soil organisms with limited active dissemination,
and that the major species are asexual (parthenogenetic) organ-
isms with poor capacity for gene flow and adaptive evolution.89

However, recent advances in the genomics of RKNs suggested that
mechanisms other than genetic recombination may be the source
of phenotypic variability in these clonal organisms (e.g. gene dupli-
cations, epigenetic inheritance, etc.),90,91 which could contribute to
their ability to adapt to poor environmental conditions.

Major R genes are a rare resource in plant germplasm, and
long-term ability to use them in management is essential.
Although quantitative resistance occurs much more fre-
quently than R-gene-based resistance in pepper germplasm
collections,92 exploitation of QTLs is much more complex in
breeding programmes. Without careful management, the dura-
tion of commercial exploitation of most R genes available in
solanaceous crops could be significantly reduced.

6 R GENE DEPLOYMENT IN AGROSYSTEMS:
USE WITH CARE!
Integrated management strategies are required to avoid/reduce
the negative effects associated with long-term use of such
resistant cultivars, in order to preserve their durability. In the
favourable but uncommon case where several R genes are avail-
able in one crop species, as in pepper, different spatiotemporal
deployment strategies may be considered for utilisation, e.g.
sequential use of the available R genes, mixtures, alternation or
pyramiding. In that respect, we experimentally evaluated such
strategies in a model system with the Me1 and Me3 R genes of
pepper. Under field conditions over 3 years, the efficiency and
the durability of resistance were assessed in a protected crop
system with pepper as the summer crop and lettuce as the win-
ter crop. Whatever the R gene(s) and the management strategy
considered, resistant cultivars significantly reduced nematode
infestations.93 However, differences were observed when looking
at three components of the cropping system (i.e. efficiency of
resistance, durability of resistance and sustainability of crop rota-
tion), which provided the same hierarchy of the tested strategies:
pyramiding> alternation>mixtures> sequential use of a single
R gene introgressed in a susceptible background.93 In particular,
pyramiding two major R genes that differ in their mechanisms (as
is the case for Me1 and Me3 in pepper)94,95 into a single cultivar
seemed the most secure and durable strategy after 3 years of
experimentation.93 Interestingly, the recent use of a stochastic

model of pathogen adaptation dynamics in response to quanti-
tative resistance showed that the combination of QTLs affecting
distinct pathogen traits was indeed durable, especially when
the restoration process of repressed traits was antagonistic or
independent.96

In cases where RKN-resistant elite cultivars are not commercially
available, grafting plants on resistant rootstocks has been consid-
ered as a possible alternative, with the additional advantage that
grafting may improve tolerance of vegetables to abiotic stresses.97

For example, in south-eastern Spain, under greenhouse crop con-
ditions, a close relationship was found between pepper rootstock
resistance to M. incognita and yield, the more resistant acces-
sions showing the better agronomic performance as rootstocks.56

However, for some of the resistant genotypes tested, two suc-
cessive years of growing grafted plants in a naturally M. incog-
nita-infested greenhouse was sufficient to overcome resistance,87

which again highlights the need for careful management of such
genetic resources.

At the operational level, either for producers or plant breeders,
the message here is that genetic resistance should be considered
as one individual weapon only among the several available to fight
RKNs, and that only the combination of genetic resistance with
cultivation practices will allow the design and development of
innovative, sustainable crop production systems that protect the
R genes and maintain their durability. Among other options, the
synergistic use of green manures, cover crops, solarisation, nemati-
cidal plants, etc., in complement with plant resistance may become
realistic.98 – 101 The current challenge for pathogen control is to
design new cropping systems that allow incorporation of alterna-
tive techniques with the use of R genes, in order to diversify the
selection pressures on the nematode populations while satisfying
the farmer constraints.102 Obviously, this challenge will open new
research questions at the crossroads of various disciplines from
plant to agricultural sciences, as well as at the crossroads of exper-
imental approaches varying from very controlled experiments to
field surveys. A diversity of academic and non-academic partners
will be necessary to provide the complementary expertise needed
for elaborating such a new paradigm.
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