

Session S20 : Plant-parasitic nematodes in temperate crops; new issues

Experimental evidence of the efficiency of 2 *R*-genes deployment strategies - pyramiding or alternating - for sustainable management of root-knot nematodes

Djian-Caporalino C., Fazari A., Marteu N., Sage-Palloix A.M., Risso S., Lanza R., Palloix A., Castagnone-Sereno P.

Root-knot nematodes Meloidogyne spp.

An increasing problem on vegetable crops in all Mediterranean regions

a big threat for > 40% of farms producing vegetables in SE France

Crop rotations with resistant plants : economically efficient and environmentally safe but resistance can be overcome

*Djian-Caporalino, Phytoma November 2010 & EPPO Bulletin April 2012

Potato

Limitation of the RKN-resistance

In controlled conditions with high pressure of RKN

• Mi-1 in tomato and Me3 in pepper are overcome e.g. Jarquin-Barberena et al. 1991; Castagnone-Sereno et al. 1994, 1996, 2001; Meher et al. 2009; Djian-Caporalino et al., 2011

In natural conditions

• *Mi-1* in tomato and *N* in pepper cultivars, used for 60 years, are overcome *e.g.,* Tzortzakakis *et al.* 2005, 2008; Verdejo-Lucas *et al.* 2009; Devran and Söğüt 2010 ; Thies 2012

Worlwide occurrence of *Meloidogyne* spp. populations able to overcome the tomato *Mi-1* R-gene

Model to study the durability of resistance to RKN

Capsicum annuum Me1 to Me7, Mech1, Mech2, N

Hendy et al, Nematologica 1985 ; Hare, Phytopathology 1956 ; Thies & Fery, J Amer Soc Hort Sci 1998 & 2000 ; Thies & Ariss, EJPP 2009; Djian-Caporalino et al., Theor Appl Genet 1999, 2001, 2007

Castagnone et al, Plant Breeding 2001 ; Djian-Caporalino et al., EJPP 2011

Experimental approach

Climate controlled room experiments

- . Strength of the genes (in several genetic context & with several RKN pop.)
- . Varietal effect (genetic background)
- . Combination of genes (pyramiding)

3-years greenhouse and field experiments

- . Validation facing natural nematode populations
- . Deployment strategies of *R*-plants lowering the risk of emergence of virulent nematodes :

i) alternance of *R*-genes in rotation,ii) mixture of different *R*-genotypes in the same plotiii) pyramiding of 2 *R*-genes in one genotype.

Nice. SE France

250 m², 52 plots, 5 plants/µplot

:•:

....

-

....

**

:0

:*

:<

0.0

3:

3%

:\$

3.8

6 / 13

Plastic tunnel 28 m x 8 m infested by *M. incognita* + *M. arenaria*

Nice, SE France

GI = gall index on peppers after 5 months of culture in summer

Mean GI on 40 to 45 plants

GI = gall index on peppers after 5 months of culture in summer

Mean GI on 40 to 45 plants

GI = gall index on peppers after 5 months of culture in summer

Mean GI on 40 to 45 plants

F1 hybrids (Me1 in S background) less R than Me1 R-parent

GI = gall index on peppers *after 5 months of culture in summer*

Mean GI on 40 to 45 plants

F1 hybrids (Me1 in S background) less R than Me1 R-parent

Me3 overcome but specificity of virulence confirmed : alternation with Me1 interesting Dijan-Caporalino *et al.*, *EJPP 2011*

GI = gall index on peppers *after 5 months of culture in summer*

Mean GI on 40 to 45 plants

Me1 robust : difficult to overcome

F1 hybrids (*Me1* in S background) less R than *Me1 R*-parent

Me3 overcome but specificity of virulence confirmed : alternation with Me1 interesting

Me3 R-peppers seem protected by Me1 R-peppers

GI = gall index on peppers *after 5 months of culture in summer*

Mean GI on 40 to 45 plants

Me1 robust : difficult to overcome

F1 hybrids (*Me1* in S background) less R than *Me1 R*-parent

Me3 overcome but specificity of virulence confirmed : alternation with Me1 interesting

- Me3 *R*-peppers seem protected by *Me1 R*-peppers
- **Me3Me1** *R*-peppers definitively the best modality

GI = gall index on salads

after 3 months of culture in winter

Mean GI on 40 to 45 plants

Some *R*-peppers modalities protected the salads, significantly

Me3Me1 R-peppers gave the best protection to the salads in the rotation

note : the third year, the experiment was not fertilized by the grower => the peppers were not sufficiently developped to traps nematodes

SIP = soil infection potential

Before peppers : SIP was high in each microplot (4-5)

SIP = soil infection potential

SIP = soil infection potential

S-salads allowed the multiplication of nematodes in each microplots

SIP = soil infection potential

After 2 months without any culture, no significant evolution of SIP

SIP = soil infection potential

SIP = soil infection potential

Pyramiding R-genes in one pepper genotype : suppressed the emergence of virulent isolates, more durable, and best modality as trap crop_{10 / 13}

Conclusions

Strategies to strengthen and inscrease the R durability

At the plant level (plant breeders)

- Choice of the R-genes (the more robust, linked to the R-mechanism)
- Choice of the genetic background (in which the R-gene is introgressed)
- Combinaison of *R*-genes (pyramiding)

At the field and rotation level (farmers)

Diversification of R-plants (alternating R-genes)
To reduce the selection pressure of R-genes on the pathogens

Use of a good fertilization for *R*-plants : to increase their "trap" effect

 \blacksquare To decrease the amount of pathogens

To prevent the selection of

virulent nematodes

in good agreement with concepts recently developed for pepper-virus, rapeseed-fungus, rice-bacteria

Palloix *et al., New Phytol* 2009, Brun *et al., New Phytol* 2010 Yoshimura *et al. Mol Breeding* 1995; Hittalmani *et al. Theor Appl Genet* 2000; Singh *et al., Theor Appl Genet* 2001

Perspectives

The GEDUNEM project : Varietal and technical innovations for the sustainable and integrated management of RKN in protected vegetable cropping systems.

Combination of *R***-plants and cropping techniques** : intercultural management (green manure, prophylactic treatments), biological control, multicrop rotations with bad host plants, and *R*-plants (alternance *Mi*-tomatoes, *Me3*-peppers)

NAmetaprogramme SMaCH (Sustainable Management of Crop Health)

Analysis of partial resistance factors (QTL, quantitative trait locus) that could explain the protective effect of the genetic background on major *R*-genes

Wed, Sept 26, Session S16

The genetic background plays an important role on durability of plant major *R*-genes to nematodes

Collaborative network

INRA Sophia Antipolis (SE France)

Philippe Castagnone-Sereno Caroline Djian-Caporalino Ariane Fazari (techn) Nathalie Marteu (techn) Arnaud Barbary (PhD) Delphine Angella (CDD)

INRA Avignon and Montpellier (SE & SW France)

Alain Palloix Anne-Marie Sage-Palloix Ghislaine Nemouchi (techn)

Marc Tchamitchian Mireille Navarrete Mathilde Chapuis (student) Amélie Lefevre Laure Pares (techn)

IRD Montpellier (SW France)

Thierry Mateille Johannes Tavoillot (techn)

Farmers' associations and technical centres (SE France)

Research Group in Organic Farming (SE France)

Private breeding companies (Syngenta, Vco, Gautier, Taki, Sakata, Rijkzwaan)

Thank you for your attention

